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Why Logic & Proof in Mathematics?

• Our society expects people to have ability to make decisions in their 
workplaces more efficiently by deducing valid inferences from a 
tremendous amount of information and resources. 

• A person’s logical thinking in workplace plays a crucial role in 
• Making valid arguments from the given information 
• Evaluating the validity of others’ arguments  

• Training our students as logical thinkers is a central component in 
education (NCTM, 2000; NGAC & CCSSO, 2010; NRC, 2005) 

• Many universities offer mathematics courses to introduce logic and various 
proof structures for valid arguments in mathematical contexts (David & 
Zazkis, 2017).



A calculus 
student’s 

interpretation 
of the 𝜀𝜀 − 𝑁𝑁

definition

A sequence {𝑎𝑎𝑛𝑛} converges to L if for any 𝜀𝜀
> 0, there exists a positive integer 𝑁𝑁 such that for all 𝑛𝑛 > 𝑁𝑁, |𝑎𝑎𝑛𝑛 − 𝐿𝐿| < 𝜀𝜀.

Emma: Okay, umm, say you can randomly pick an integer 
N…, and I chose to pick 10, which means the tenth term of 
the sequence. And if my sequence is defined by … 
1 − 1/𝑛𝑛 𝑛𝑛=1

∞ , then for the 10th term, or the N-th term, 𝑎𝑎𝑁𝑁
is equal to 1 − 1/10, which equals 9/10. And to calculate 
the … 𝜀𝜀, for that, we could see the value of 𝑎𝑎𝑁𝑁 minus the 
limit which we said was 1 …. And we will take the absolute 
value of that difference [9/10 − 1], which is equal to 
1/10. And we will see that [1/10] is equal to 𝜀𝜀…. And then 
we are saying that the difference of the value of any term 
that is after 10[th] minus the limit of the sequence will be 
less than the value of 1/10 because each term value [1 −
1/𝑛𝑛] is getting closer and closer to 1.



Why do we tend to reverse the 
order of 𝜀𝜀 and 𝑁𝑁 from the 
definition? 
Our intuition suggests a “dynamic” idea of a limit as the result 

of a process of “motion”; we move on through the row of 
integers 1, 2, 3, …, n, … and then observe the behavior of 
the sequence an. […] we feel that the approach an→a should 
be observable. But […] to arrive at a precise definition we 
must reverse the order of steps; instead of first looking at the 
independent variable n and then at the dependent variable 
an→a, we must base our definition on what we have to do if 
we wish actually to check the statement . In such a procedure 
we must first choose an arbitrarily small margin around a and 
then determine whether we can meet this condition by 
taking the independent variable n sufficiently large (Courant 
& Robbins, 1996, 2nd ed., p.292).
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Study 1: 
Clinical Interviews 
with Calculus 
Students

Roh, K. (2010). An empirical study of students’ understanding of a 
logical structure in the definition of the limit of a sequence via the ε-
strip activity. Educational Studies in Mathematics, 73, 263-279.



The ε-strips are …

• made of translucent paper
• The graph of a sequence can be observed through ε-strips.  

• in the center of which a red line is drawn
• An anticipated value for the limit of a sequence can be marked by the center 

line of each ε-strip.  

• with constant width
• Each error bound ε can be specified by the half of the width of an ε-strip.

• with indefinite length
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Evaluate ε-strip definitions A & B

L is a limit of a sequence when for any 
ε-strip centered at L, infinitely many 
points on the graph of the sequence are 
inside the ε-strip.

L is a limit of a sequence when for any 
ε-strip centered at L, only finitely many 
points on the graph of the sequence are 
outside the ε-strip .

ε-strip definition A ε-strip definition B
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Findings:
Various ways that 
calculus students 
interpret “for any 

𝜀𝜀 > 0” in the 
definition 

The 𝜀𝜀 − 𝑁𝑁 definition: 
A sequence {𝑎𝑎𝑛𝑛} of real numbers is said to converge 
to a real number L if for any 𝜺𝜺 > 0, there exists 𝑁𝑁 ∈ ℕ
such that for all 𝑛𝑛 > 𝑁𝑁, |𝑎𝑎𝑛𝑛 − 𝐿𝐿| < 𝜀𝜀. 

• No meaning
• 0 for a value for epsilon (single value)
• Some positive numbers for epsilon (a finite 

number of values, static)
• Any, but fixed, positive number for epsilon (an 

infinite number of values, static) 
• A sequence of any positive numbers, decreasing 

towards zero (an infinite number of values, 
dynamic)



Ben’s argument

Infinitely many points on 
the graph of the sequence 
{1/n} are inside the ε-strip 
when the ε-strip is centered 
at y=−0.05. Hence, 
accepting ε-strip definition 
A as a definition of limit, we 
should determine the value 
−0.05 as a limit of {1/n}.



Emma’s argument

Only finitely many points on 
the graph of the sequence 
{1/n} are outside the ε-strip 
when the ε-strip is centered 
at y=−0.05. Hence, 
accepting ε-strip definition 
B as a definition of limit, we 
should determine the value 
−0.05 as a limit of the 
sequence {1/n}.



Study 2: Classroom Teaching 
Experiment in advanced 
calculus

Roh, K., & Lee, Y. (2017). Designing tasks of introductory real 
analysis to bridge a gap between students’ intuition and 
mathematical rigor: The case of the convergence of a sequence. 
International Journal of Research on Undergraduate Mathematics 
Education, 3, 34-68.



The 
Classroom 
Setting

• Proofs & Rigorous Definitions
• Math or Secondary Math Education Students 

Advanced Calculus

• Worksheets provided in class
• Class-note provided after topics are covered in class

• Definitions & Theorems without proofs 

No Textbook

• Small groups (3~4 members per group)
• Two 75-minute classes & one 50-minute recitation per 

week for 15 weeks
• Students were asked to make and justify conjectures 

and to evaluate arguments.

Inquiry-Based Learning (IBL)



The ε-strip 
activity in the 
Advanced 
Calculus 
Classroom

Determine the convergence 
of sequences provided

Evaluate ε-strip 
definitions A and B

Evaluate Ben & Emma’s 
arguments about ε-strip 

definitions A and B

Re-evaluate ε-strip 
definitions A and B

Revise ε-strip definitions A 
and B if needed.

ε-N Definition 
Introduced to the 

class

Compare the ε-N 
definition with ε-

strip definitions A  B 



• At the beginning of the ε-strip activity, four students 
in Group 1 evaluated that neither ε-strip definition A 
nor ε-strip definition B is correct. 

• Several shifts in these students’ evaluations were 
made until they accept ε-strip definition B as a 
definition for the limit of a sequence:

• At the end of the ε-strip activity, they evaluated that 
ε-strip definition A is incorrect, and accepted ε-strip 
definition B. 

Condition A is insufficient Condition A is unnecessary Condition B is necessary Condition B is sufficient

How did students come to accept ε-strip definition B 
as a definition for the limit of a sequence?



Dave’s interpretation of the 𝜀𝜀 − 𝑁𝑁 definition 
after the 𝜀𝜀-strip activity in classroom  

How I've been viewing it [ε] is a length of ε-zone. It [ε] has 
to be greater than 0. So for any value of ε, and this [ε] is 
just an arbitrary one, we can find a point N such that all 
values of small n that I remember are naturals after this [N] 
are contained within this value of ε. So, basically this [𝑎𝑎𝑛𝑛]
minus the value of L … the absolute value of that [ 𝑎𝑎𝑛𝑛 − 𝐿𝐿 ]
will give you a value less than 𝜀𝜀. […] What we find is that 
we can find a point where all of these points can be 
counted, and all these […] infinite points are contained 
within the ε-strip. […] Whatever arbitrary point you choose 
in here [inside the 𝜀𝜀-strip] would be 𝑎𝑎𝑛𝑛 […] as long as n is 
larger than N. I’m just thinking individual dots, but each of 
these dots will be small n. And if you pick any arbitrary 
value (points to a dot inside the 𝜀𝜀-strip), then it will be 𝑎𝑎𝑛𝑛. 



How did the ε-strip activity play a role in 
understanding the ε-N definition?  

• Why ε is necessary in defining the limit of a 
sequence

• Why N is necessary in defining the limit of a 
sequence

The ε-strip activity helped 
students to understand 
the necessity of ε and N

• Why N may depend on ε 
• Why ε is independent of N (cf. Emma in Slide 6)

The ε-strip activity helped 
students to construct 

dynamic mental images 
regarding relationships 

between ε and N 



How did the ε-strip activity play a role in 
learning the next sequence of topics?  

• Definition of a Cauchy sequence 
• Definition of the Limit of a Function
• Definition of a Continuous Function

The ε-strip activity 
helped students to 
understand other 

definitions with the 
similar logical structure

• Exercise for proofs of convergence
• Proofs for theorems (e.g., Every convergent 

sequence is a Cauchy sequence.)

The ε-strip activity 
helped students to 

construct proofs using 
definitions with the 

similar logical structure



Study 3: Logical Thinking in  
non-mathematical contents 

Roh, K., Lee, Y., & Austin, T. (2016). The King and Prisoner 
puzzle: A way of introducing the components of logical 
structures. Problems, Resources, and Issues in Mathematics 
Undergraduate Studies, 26, 424-436.



The King & Prisoner Puzzle
Once upon a time, there were a king and a prisoner. One day, the king made a suggestion to the prisoner.

King: There are two rooms in front of you. (A) In each of these rooms, there is either a beast or a key to 
the prison. In front of each room, there is a description about whether there is a key or a beast. (B) Only 
one of these descriptions is true and the other is false. If you go into a room that has a key, you will be 
free.

The prisoner saw the following descriptions on the door of each room:
• Room 1 (R1): In one room, there is a key; and in the other, there is a beast.
• Room 2 (R2): In this room, there is a beast; and in the next room, there is a key.

Can the prisoner be free? If the prisoner can be free, which room(s) should be selected in order for the 
prisoner to be free? 



A Valid Solution 

Suppose (R2) is true. Then there is a key in Room 1 and 
there is a beast in Room 2, which make (R1) true as 
well. However, due to (B) it is impossible for both (R1) 
and (R2) to be true. Hence (R2) should be false. Then by 
(B), (R1) must be true. Thus there are only two possible 
cases as follows: 

Case 1: There is a beast in Room 1 and there is a 
key in Room 2; 
Case 2: There is a key in Room 1 and there is a 
beast in Room 2. 

Between these two cases, Case 2 makes (R2) true as 
well, which contradicts (B). Hence, it must be Case 1. 
Therefore, yes, there is a key in Room 2; hence the 
prisoner can be free if the prisoner chooses Room 2.

• (A) In each of these rooms, there is 
either a beast or a key to the prison.

• (B) Only one of the descriptions  
between R1 and R2 is true and the other 
is false.

• (R1) In one room, there is a key; and in 
the other, there is a beast.

• (R2) In this room, there is a beast; and in 
the next room, there is a key. 



Student solutions to the King & Prisoner Puzzle

Incorrect 
Solutions

Correct 
Solution

# of Students
(%)

# of Students 
(%)

13 (28.3 %) 33 (71.7 %) 46 (100 %)



Validity of Student Solutions

Incorrect 
Solutions

Correct Solution # of Students
(%)

Invalid Solutions 13 (28.3%) 31 (67.4%) 44 (95.7%)

Valid Solutions 2 (4.3 %) 2 (4.3 %)

# of Students (%) 13 (28.3 %) 33 (71.7 %) 46 (100 %)



Validity of Student Solutions 
in Comparison

# of Students w/o 
Learning Logic

# of Students w/ 
Learning Logic

Invalid 
Solutions

31 13

Valid Solutions 0 2

# of Students 
(%)

31 15



A Student 
Solution to 

the King and 
Prisoner 

Puzzle  

Because (R2) describes exactly where the key is 
whereas (R1) leaves the option open that either 
room will have a key, the prisoner might consider 
(R2) to be true. However, that is a trap that the 
King set for the prisoner because the king would 
not be happy if the prisoner is free. The king 
would want the prisoner to be eaten by a beast 
in Room 1. That means (R2) must be false. Then 
Room 1 has a beast and Room 2 has a key. 
Therefore, yes, there is a key in Room 2; hence 
the prisoner can be free if the prisoner chooses 
Room 2 . 



Some issues in students’ logic emerged 
repeatedly in Problem solving 
• De Morgan’s rule: used the word ‘and’ in the negations of the statements instead 

of replacing it to ‘or.’ 
• The word ‘a’ in quantification: the word ‘a’ in the phrase ‘there is a key’ or ‘there 

is a beast’ as a singular quantity. 
• Converse error (Epp, 2003): considered improperly that (R1) implies (R2) because 

(R2) satisfies (R1). 



Many students did not monitor the validity of 
their solutions. 

• Some students show logical inconsistency in their 
arguments in the sense that they did not recognize that 
new claims that they generated from the given 
information contradicts with other given information.

• Although some students recognized a contradiction 
in their argument, they were unable to figure out 
how to handle the contradiction to solve the 
problem.   

• Some other students did not complete the validation 
process. 



Study 4. 
Students’ Cognitive Consistency in Their 
Logical Thinking in mathematical contents

Roh, K., & Lee, Y. (2018). Cognitive consistency and its 
relationships to knowledge of logical equivalence and 
mathematical validity.  Proceedings for 21st annual Conference on 
Research in Undergraduate Mathematics Education. San Diego, 
CA



Cognitive Consistency (CC) 

• Cognitive consistency refers to an intra-individual psychological 
pressure to self-organize one’s beliefs and identities in a balanced 
fashion” (Cvencek, Meltzoff, & Kapur, 2014). 

• People behave in ways that maintain cognitive consistency among 
interpersonal relations, intrapersonal cognitions, beliefs, feelings, or 
actions (Bateson, 1972, Festinger, 1957; McGuire, 1966)



Cognitive Consistency (CC) in Logical Thinking

• An individual psychological pressure to self-organize his/her thinking 
to have no logical contradiction 

• People behave in ways that maintain consistency among claims in 
their arguments, with no logical contradictions among the claims . 

• From given (or available) information, a person might deduce two claims, ‘x is 
an integer’ and ‘x is not an integer’. 

• The person might recognize that two claims, ‘x is an integer’ and ‘x is not an 
integer’ contradict one another. 

• Once the person recognizes such a logical contradiction, he/she would 
attempt to find a way to remove it from his/her argument in order to 
maintain cognitive consistency in his logical thinking.



Questions for CC in Logical Thinking

Statement Format Truth-value Argument Structure Validity 

Q8
Simple Statement 
with Two Quantifiers 

True Example/counterexample invalid

Q9
Conditional Statement 
with One Universal Quantifier 

True Direct proof invalid

Q10
Simple Statement 
with One Universal Quantifier 

False Proof by contradiction valid

Q11
Simple Statement 
with Universal Quantifier in the premise 

True Proof by contrapositive invalid

Q12
Simple Statement 
with One Universal Quantifier 

True Proof by mathematical 
induction

invalid



Format of the questions for CC

• Each question consists of a statement, one or two arguments about 
the statement, and four sub-questions:

Given a statement and an argument about the statement, 
1) Determine the truth-value of a given statement (Multiple Choice)
2) Determine if the argument is to prove or to disprove the statement 

(Multiple Choice)
3) Evaluate the validity of the argument (Multiple Choice)
4) Explain why you think (Open ended)



Example: Q9
Q9. An integer a is said to be odd if and only if there exists 𝑛𝑛 ∈ ℤ such that 𝑎𝑎 = 2𝑛𝑛 + 1. Tim was asked to prove or disprove:

(♣) For any positive integers x and y, if x and y are odd, then 𝑥𝑥𝑥𝑥 is odd.

The following is Tim’s argument:

𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ

𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ

Therefore, 𝑥𝑥𝑥𝑥 = 2𝑛𝑛 + 1 2𝑛𝑛 + 1 = 4𝑛𝑛2 + 4𝑛𝑛 + 1 = 2 2𝑛𝑛2 + 2𝑛𝑛 + 1 is odd.

1) Check the most appropriate one about the statement (♣).
a. The statement (♣) is true.
b. The statement (♣) is false.
c.  We cannot determine if the statement (♣) is true or false.

2) Check the most appropriate one to describe what Tim attempted to prove.
a. Tim attempted to prove the statement (♣) is true.
b. Tim attempted to prove statement (♣) is false.
c. We cannot determine if Tim attempted to prove the statement (♣) is true or he attempted to prove the statement (♣) is false.

3) Check the most appropriate one to describe if Tim’s argument is valid.
a. Tim’s argument is valid as a proof of the statement (♣).
b. Tim’s argument is invalid as a proof of the statement (♣). 
c. We cannot determine if Tim’s argument is valid or invalid. 



Scoring Rubric for 
Cognitive Consistency (CC) in Logical Thinking 

A Student’s Score of Cognitive Consistency (CC)
= ∑𝑖𝑖=812 (CC score from 𝑄𝑄𝑖𝑖)

• Each question was scored either -1 (cognitive inconsistency) or 0 (no 
cognitive inconsistency).

• CC scores could be possibly ranged from -5 to 0.



Example of Cognitive Consistency (Q9)
Examples of Cognitive Consistencies

(1) Is the given statement is true? (2) What does the given argument
attempts to?

(3) Is the given argument is 
valid?

(a) True (b) Prove False (b) Invalid

(b) False (c) Prove True (b) Invalid

(a) True (b) Prove True (a) Valid

Q9. An integer a is said to be odd if and only if there exists 𝑛𝑛 ∈ ℤ such that 𝑎𝑎 = 2𝑛𝑛 + 1. 
Tim was asked to prove or disprove:

(♣) For any positive integers x and y, if x and y are odd, then 𝑥𝑥𝑥𝑥 is odd.
The following is Tim’s argument:

𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ
𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ

Therefore, 𝑥𝑥𝑥𝑥 = 2𝑛𝑛 + 1 2𝑛𝑛 + 1 = 4𝑛𝑛2 + 4𝑛𝑛 + 1 = 2 2𝑛𝑛2 + 2𝑛𝑛 + 1 is odd.

CC score on Q9 = 𝟎𝟎



Examples of Cognitive Inconsistency (Q9)
Cognitive Inconsistencies in Logical Thinking

(1) Is the given statement is true? (2) What does the given argument
attempts to?

(3) Is the given argument is 
valid?

(a) True or  (c) Cannot determine (b) Prove False (a) Valid

(b) False or (c) Cannot determine (c) Prove True (a) Valid

Q9. An integer a is said to be odd if and only if there exists 𝑛𝑛 ∈ ℤ such that 𝑎𝑎 = 2𝑛𝑛 + 1. 
Tim was asked to prove or disprove:

(♣) For any positive integers x and y, if x and y are odd, then 𝑥𝑥𝑥𝑥 is odd.
The following is Tim’s argument:

𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ
𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ

Therefore, 𝑥𝑥𝑥𝑥 = 2𝑛𝑛 + 1 2𝑛𝑛 + 1 = 4𝑛𝑛2 + 4𝑛𝑛 + 1 = 2 2𝑛𝑛2 + 2𝑛𝑛 + 1 is odd.

CC score on Q9 = −𝟏𝟏



Examples of Cognitive Inconsistency (Q9)
Cognitive Inconsistencies in Logical Thinking

(1) Is the given statement is true? (2) What does the given argument
attempts to?

(3) Is the given argument is 
valid?

(a) True or  (c) Cannot determine (b) Prove False (a) Valid

(b) False or (c) Cannot determine (c) Prove True (a) Valid

Q9. An integer a is said to be odd if and only if there exists 𝑛𝑛 ∈ ℤ such that 𝑎𝑎 = 2𝑛𝑛 + 1. 
Tim was asked to prove or disprove:

(♣) For any positive integers x and y, if x and y are odd, then 𝑥𝑥𝑥𝑥 is odd.
The following is Tim’s argument:

𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ
𝑥𝑥 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ ℤ

Therefore, 𝑥𝑥𝑥𝑥 = 2𝑛𝑛 + 1 2𝑛𝑛 + 1 = 4𝑛𝑛2 + 4𝑛𝑛 + 1 = 2 2𝑛𝑛2 + 2𝑛𝑛 + 1 is odd.

CC score on Q9 = −𝟏𝟏



Pretest Results (N=55)



Posttest Results (N=47)



Posttest – Pretest Comparison



Some issues with 
Transition-to-Proof courses
• Debates have been made whether or not 

students can learn mathematical logic when 
it was presented in mathematical contents.

• However, cognitive consistency in logical 
thinking might NOT have been treated as a 
crucial component in transition-to-proof 
courses. 

• Designing tasks or instructional 
interventions would be needed to help 
students recognize cognitive inconsistencies 
in their logical thinking if they have any.  



Suggestions for classroom activities
• Ask students to (1) determine the truth-value of the statements 

before proving or disproving the statements
• Add more activities/tasks for the validation of someone else’ 

arguments. In the validation activities, ask students
(2) Determine if the argument is to prove or to disprove the 
statement 
(3) Evaluate the validity of the argument

• Facilitate student discussion even after proof construction or 
proof validation activities



Direction for Future Research

• Refining the Mathematical Logic Instrument (MLI) to include 
• Various types of statements 
• Various types of arguments to be paired with the statements

• Scale-up the cognitive consistency study (Roh & Lee, 2018) via the 
revised MLI

• Investigation of the correlation between cognitive consistency in students’ 
logical thinking and their knowledge of mathematics, mathematical logic, & 
mathematical proofs.

• Design of instructional interventions for cognitive consistency in 
logical thinking



Thank you!

Kyeong Hah Roh
khroh@asu.edu
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